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The angucycline family of antibiotics is a large group of 
biologically active secondary metabolites of microbrial origin.1-3 

Urdamycin B, a group member isolated from Streptomyces 
fradiae, is composed of a trisaccharide attached through a 
C-glycoside linkage to an angular quinone ring system.4 Careful 
acid hydrolysis of urdamycin B led to the loss of two sugars 
and the isolation of the aglycon urdamycinone B (l).2a 
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To investigate the midstage steps of the biosynthesis of 
angucycline antibiotics, blocked mutant strains of the urdamycin 
producer S. fradiae were prepared.5 From these mutant strains 
five new metabolites including 104-2 (2) were isolated and 
identified. To account for the production of 104-2 (2), Rohr 
and co-workers postulated two shunt pathways. The first 
proposal entailed direct C5 oxidation of urdamycinone B (1) to 
104-2 (2) by an unspecific oxygenase. The second proposal, 
outlined below, proceeds via selective C5 hydroxylation of 
midstage intermediate 3 to produce a hypothetical ring B triol 
(4). Subsequent dehydration of 4 would then account for the 
production of 5. Herein we report a total synthesis of urda
mycinone B (1) and of the shunt metabolite 104-2 (2). The 
latter is conceptually similar to the biosynthetic pathway outlined 
below (3 — 4 — 5). 
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Our synthetic strategy relied on a Diels—Alder cycloaddition 
between diene 14a and bromojuglone 17 to assemble the carbon 
framework common to 1 and 2.3g We first outline in Scheme 
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4 A molecular sieves, 20 0C, 72%. (g) CH2Cl2, 0-20 0C, 99%. (h) 
CH2Cl2, 20 0C, 100%. (i) Et2O, -78 to 0 0C. (j) PhH, 0-20 °C, 72% 
for two steps, (k) CH2Cl2, -78 0C, 89%. 

1 the synthesis of diene 14a starting from known triol 6, which 
is easily obtained from (—)-quinic acid using a previously 
described two-step procedure.6'7 Tosylation of 68,9 followed by 
epoxide formation and reduction afforded diol 88 in 71% overall 
yield. Mesylation of 8 gave rise to the corresponding secondary 
mesylate, which upon reductive fragmentation afforded diol 98a 

as a colorless oil in 83% yield.10 Protection of the more 
hindered tertiary alcohol of 9 was accomplished by a two-step 
sequence. First, the cw-l,3-diol was engaged as a cyclic 
benzylidene (1O)8 under standard reaction conditions. Treatment 
of a solution of 10 in dichloromethane with diisobutylaluminum 
hydride resulted in selective cleavage of the less hindered 
secondary ether, affording the desired benzyl ether l l8 a in 72% 
overall yield. Ley oxidation of 11 produced enone 128a in 
quantitative yield.1' Conjugate addition of a higher-order vinyl 
cuprate to 12 followed by trapping of the intermediate enolate 
with trimethylsilyl chloride and DDQ oxidation of the resultant 
silyl enol ether afforded 13.8a12 Reduction of dienone 13 with 
diisobutylaluminum hydride yielded a 9:1 mixture of diaster-
eomers. The major isomer was assigned the cis configuration 
(14a) on the basis of a single-crystal X-ray analysis of the minor 
trans alcohol (14b).13 
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0 (a) pyridine, 20 0C, 100%. (b) EtOH, 20 0C, 99%. (c) 70 0C, 94%. (d) EtOAc, 0 0C, 92%. (e) PhH, reflux, 72%. (f) 67% for three steps, (g) 
CH2Cl2, 20 0C, 100%. (h) CH2Cl2, 20 0C, 72%. (i) THF, 0 - 2 0 °C. Q) EtOAc-MeOH (1:1), O 0C. (k) THF, 0 - 2 0 0C. 

Following completion of the diene component 14a we turned 
our attention to the preparation of bromojuglone 17 and its 
subsequent cycloaddition with 14a. We have previously 
described the preparation of/3-C-naphthylglycoside 15.14 Acety-
lation of 15 followed by removal of the benzyl protecting groups 
sets the stage for oxidation of naphthol 16.8a Oxidation of 16 
utilizing conditions described by Gruenwell provides the cor
responding bromoquinone, which was subsequently peracety-
lated to afford 17.8al5 A solution of 17 and diene 14a in 
benzene was brought to reflux and maintained for 10 h to afford 
cycloadduct 188a in 72% yield.16 Dihydroxylation17 of 18 
followed by direct acetonide formation and silica gel induced 
dehydrobromination provided quinone 198a in 67% yield. 
Dess—Martin oxidation of 19 then furnished ketone 208a in 
quantitative yield.18 Treatment of a solution of 20 in dichlo-
romethane with 1 equiv of A -̂methylmorpholine N-oxide (NMO) 
resulted in the production of anthraquinones 228a and 238a as 
yellow solids in 27 and 72% yield, respectively. Anfhraquinone 
23 is proposed to arise through oxidation of the C6 position 
and ̂ -elimination of the acetonide group to produce intermediate 
carbinol 21 (not isolated), which upon dehydration affords 
22,13.20 wniie base-induced loss of acetone and water accounts 
for the production of the minor product 23. The generation of 
23, under these conditions, via oxidation of 22 appears unlikely. 
Finally, anthraquionone 22 was also obtained directly for 18 in 
88% yield via a periodinane oxidation.18 
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(21) In the case of urdamycinone B (1), /3 elimination accompanied the 
deprotection of the C3' and C4' acetyl groups to the extent of 22%. 

With anthraquinones 22 and 23 in hand, the remaining 
obstacle to completing the synthesis of urdamcyinone B (1) and 
104-2 (2) was the removal of protecting groups. In this regard 
the propensity of the C3 oxygen substituent, located /? to the 
Cl keto group, to undergo ^-elimination was of concern.12b 

Indeed attempts to remove all three acetyl groups employing 3 
equiv of lithium hydroxide in aqueous tetrahydrofuran resulted 
in elimination of the C3 benzyloxy group accompanying 
deacetylation. To circumvent this problem, a three-step pro
cedure was developed. First removal of the C8 acetyl group 
was effected using 1 equiv of lithium hydroxide followed by 
hydrogenolysis of the C3 benzyl ether and finally removal of 
the remaining C3' and C4' acetyl groups. This three-step 
deprotection procedure produced urdamycinone B (1) from 22 
in 54% yield,21 while anthraquinone 23 afforded 104-2 (2) in 
52% yield. The spectral data of synthetic and natural urdamy
cinone B (1) were identical in all respects, as were those of 
synthetic and natural 104-2 (2) (i.e., 1H and 13C NMR, IR, and 
CD). 

In conclusion, we have completed the total synthesis of 
urdamycinone B (1) and 104-2 (2). The former synthetic 
sequence proceeds in 18 steps and provides 1 in 6.7% overall 
yield, while the latter proceeds in 22 steps and provides 2 in 
5.6% overall yield. The application of this convergent strategy 
to the total synthesis of other angucycline antibiotics is currently 
under investigation. 
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